Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications (2024)

1. Ali H., Khan E., Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019;2019 doi:10.1155/2019/6730305. [CrossRef] [Google Scholar]

2. Bhunia P. Environmental Toxicants and Hazardous Contaminants: Recent Advances in Technologies for Sustainable Development. J. Hazard. Toxic. Radioact. Waste. 2017;21:02017001. doi:10.1061/(ASCE)HZ.2153-5515.0000366. [CrossRef] [Google Scholar]

3. Chin N.P. Environmental toxins: Physical, social, and emotional. Breastfeed. Med. 2010;5:223–224. doi:10.1089/bfm.2010.0050. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Zhang X., Yan L., Liu J., Zhang Z., Tan C. Removal of different kinds of heavy metals by novel PPG-nZVI beads and their application in simulated stormwater infiltration facility. Appl. Sci. 2019;9:4213. doi:10.3390/app9204213. [CrossRef] [Google Scholar]

5. Su C., Jiang L., Zhang W. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environ. Skept. Critics. 2014;3:24–38. [Google Scholar]

6. Tóth G., Hermann T., Da Silva M.R., Montanarella L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016;88:299–309. doi:10.1016/j.envint.2015.12.017. [PubMed] [CrossRef] [Google Scholar]

7. Li Z., Ma Z., van der Kuijp T.J., Yuan Z., Huang L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014;468–469:843–853. doi:10.1016/j.scitotenv.2013.08.090. [PubMed] [CrossRef] [Google Scholar]

8. Xiao R., Wang S., Li R., Wang J.J., Zhang Z. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicol. Environ. Saf. 2017;141:17–24. doi:10.1016/j.ecoenv.2017.03.002. [PubMed] [CrossRef] [Google Scholar]

9. Cho-Ruk K., Kurukote J., Supprung P., Vetayasup*rn S. Perennial plants in the phytoremediation of lead-contaminated soils. Biotechnology. 2006;5:1–4. doi:10.3923/biotech.2006.1.4. [CrossRef] [Google Scholar]

10. Tangahu B.V., Sheikh Abdullah S.R., Basri H., Idris M., Anuar N., Mukhlisin M. A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. Int. J. Chem. Eng. 2011;2011:1–31. doi:10.1155/2011/939161. [CrossRef] [Google Scholar]

11. Pastor S., Creus A., Parrón T., Cebulska-Wasilewska A., Siffel C., Piperakis S., Marcos R. Biomonitoring of four European populations occupationally exposed to pesticides: Use of micronuclei as biomarkers. Mutagenesis. 2003;18:249–258. doi:10.1093/mutage/18.3.249. [PubMed] [CrossRef] [Google Scholar]

12. Özkara A., Akyıl D., Konuk M. Pesticides, environmental pollution, and health. In: Larramendy M.L., Soloneski S., editors. Environmental Health Risk-Hazardous Factors to Living Species. IntechOpen; london, UK: 2016. [Google Scholar]

13. Cooper J., Dobson H. The benefits of pesticides to mankind and the environment. Crop Prot. 2007;26:1337–1348. doi:10.1016/j.cropro.2007.03.022. [CrossRef] [Google Scholar]

14. Damalas C.A., Eleftherohorinos I.G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Health. 2011;8:1402–1419. doi:10.3390/ijerph8051402. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Liu Y., Li S., Ni Z., Qu M., Zhong D., Ye C., Tang F. Pesticides in persimmons, jujubes and soil from China: Residue levels, risk assessment and relationship between fruits and soils. Sci. Total Environ. 2016;542:620–628. doi:10.1016/j.scitotenv.2015.10.148. [PubMed] [CrossRef] [Google Scholar]

16. Rosell G., Quero C., Coll J., Guerrero A. Biorational insecticides in pest management. J. Pestic. Sci. 2008;33:103–121. doi:10.1584/jpestics.R08-01. [CrossRef] [Google Scholar]

17. Lefrancq M., Imfeld G., Payraudeau S., Millet M. Kresoxim methyl deposition, drift and runoff in a vineyard catchment. Sci. Total Environ. 2013;442:503–508. doi:10.1016/j.scitotenv.2012.09.082. [PubMed] [CrossRef] [Google Scholar]

18. Verger P.J.P., Boobis A.R. Reevaluate pesticides for food security and safety. Science. 2013;341:717–718. doi:10.1126/science.1241572. [PubMed] [CrossRef] [Google Scholar]

19. Ying L., Shaogang L., Xiaoyang C. Assessment of heavy metal pollution and human health risk in urban soils of a coal mining city in East China. Hum. Ecol. Risk Assess. An Int. J. 2016;22:1359–1374. doi:10.1080/10807039.2016.1174924. [CrossRef] [Google Scholar]

20. Tong S., Li H., Wang L., Tudi M., Yang L. Concentration, Spatial Distribution, Contamination Degree and Human Health Risk Assessment of Heavy Metals in Urban Soils across China between 2003 and 2019—A Systematic Review. Int. J. Environ. Res. Public Health. 2020;17:3099. doi:10.3390/ijerph17093099. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Lu X., Zhang X., Li L.Y., Chen H. Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environ. Res. 2014;128:27–34. doi:10.1016/j.envres.2013.11.007. [PubMed] [CrossRef] [Google Scholar]

22. Kim K.H., Kabir E., Jahan S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017;575:525–535. doi:10.1016/j.scitotenv.2016.09.009. [PubMed] [CrossRef] [Google Scholar]

23. Mascarelli A. Growing up with pesticides. Science. 2013;341:740–741. doi:10.1126/science.341.6147.740. [PubMed] [CrossRef] [Google Scholar]

24. Sharon M., Bhawana M., Anita S., Gothecha V.K. A short review on how pesticides affect human health. Int. J. Ayurvedic Herb. Med. 2012;2:935–946. [Google Scholar]

25. Wickerham E.L., Lozoff B., Shao J., Kaciroti N., Xia Y., Meeker J.D. Reduced birth weight in relation to pesticide mixtures detected in cord blood of full-term infants. Environ. Int. 2012;47:80–85. doi:10.1016/j.envint.2012.06.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Roozbahani M.M., Sobhanardakani S., Karimi H., Sorooshnia R. Natural and Anthropogenic Source of Heavy Metals Pollution in the Soil Samples of an Industrial Complex; a Case Study. Iran. J. Toxicol. 2015;9:1336–1341. [Google Scholar]

27. Sutkowska K., Teper L., Czech T., Hulok T., Olszak M., Zogala J. Quality of Peri-Urban Soil Developed from Ore-Bearing Carbonates: Heavy Metal Levels and Source Apportionment Assessed Using Pollution Indices. Minerals. 2020;10:1140. doi:10.3390/min10121140. [CrossRef] [Google Scholar]

28. Alloway B.J. Sources of Heavy Metals and Metalloids in Soils. In: Alloway B.J., editor. Heavy Metals in Soils. Trace Metals and Metalloids in Soils and their Bioavailability. Springer; Dordrecht, The Netherlands: 2013. pp. 11–50. [Google Scholar]

29. Bradl H.B. Sources and origins of heavy metals. In: Bradl H.B., editor. Interface Science and Technology. Vol. 6. Elsevier B.V.; london, UK: 2005. pp. 1–27. [Google Scholar]

30. Sharma R.K., Agrawal M. Biological effects of heavy metals: An overview. J. Environ. Biol. 2005;26:301–313. [PubMed] [Google Scholar]

31. Cannon H.L., Connally G.G., Epstein J.B., Parker J.G., Thornton I., Wixson G. Rocks: Geological sources of most trace elements. Report to the Workshop at South Scas Plantation Captiva Island, FL, US. Geochem Environ. 1978;3:17–31. [Google Scholar]

32. Masindi V., Muedi K.L. Environmental Contamination by Heavy Metals. In: Saleh H.E.-D.M., Aglan R.F., editors. Heavy Metals. IntechOpen; london, UK: 2018. pp. 115–132. [Google Scholar]

33. He Z.L., Yang X.E., Stoffella P.J. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 2005;19:125–140. doi:10.1016/j.jtemb.2005.02.010. [PubMed] [CrossRef] [Google Scholar]

34. Meng L., Alengebawy A., Ai P., Jin K., Chen M., Pan Y. Techno-Economic Assessment of Three Modes of Large-Scale Crop Residue Utilization Projects in China. Energies. 2020;13:3729. doi:10.3390/en13143729. [CrossRef] [Google Scholar]

35. Alengebawy A., Jin K., Ran Y., Peng J., Zhang X., Ai P. Advanced pre-treatment of stripped biogas slurry by polyaluminum chloride coagulation and biochar adsorption coupled with ceramic membrane filtration. Chemosphere. 2021;267:129197. doi:10.1016/j.chemosphere.2020.129197. [PubMed] [CrossRef] [Google Scholar]

36. Cai L.M., Wang Q.S., Wen H.H., Luo J., Wang S. Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotoxicol. Environ. Saf. 2019;168:184–191. doi:10.1016/j.ecoenv.2018.10.092. [PubMed] [CrossRef] [Google Scholar]

37. Chen X.X., Liu Y.M., Zhao Q.Y., Cao W.Q., Chen X.P., Zou C.Q. Health risk assessment associated with heavy metal accumulation in wheat after long-term phosphorus fertilizer application. Environ. Pollut. 2020;262:114348. doi:10.1016/j.envpol.2020.114348. [PubMed] [CrossRef] [Google Scholar]

38. Bolan N.S., Adriano D.C., Naidu R. Role of Phosphorus in (Im)mobilization and Bioavailability of Heavy Metals in the Soil-Plant System BT—Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews. In: Ware G.W., Albert L.A., Bro-Rasmussen F., Crosby D.G., de Voogt P., Frehse H., Hutzinger O., Mayer F.L., Morgan D.P., Park D.L., et al., editors. Reviews of Environmental Contamination and Toxicology. Springer; New York, NY, USA: 2003. pp. 1–44. [PubMed] [Google Scholar]

39. Ai P., Jin K., Alengebawy A., Elsayed M., Meng L., Chen M., Ran Y. Effect of application of different biogas fertilizer on eggplant production: Analysis of fertilizer value and risk assessment. Environ. Technol. Innov. 2020;19:101019. doi:10.1016/j.eti.2020.101019. [CrossRef] [Google Scholar]

40. Wang X., Liu W., Li Z., Teng Y., Christie P., Luo Y. Effects of long-term fertilizer applications on peanut yield and quality and plant and soil heavy metal accumulation. Pedosphere. 2020;30:555–562. doi:10.1016/S1002-0160(17)60457-0. [CrossRef] [Google Scholar]

41. Fan Y., Li Y., Li H., Cheng F. Evaluating heavy metal accumulation and potential risks in soil-plant systems applied with magnesium slag-based fertilizer. Chemosphere. 2018;197:382–388. doi:10.1016/j.chemosphere.2018.01.055. [PubMed] [CrossRef] [Google Scholar]

42. Liu Y.M., Liu D.Y., Zhang W., Chen X.X., Zhao Q.Y., Chen X.P., Zou C.Q. Health risk assessment of heavy metals (Zn, Cu, Cd, Pb, As and Cr) in wheat grain receiving repeated Zn fertilizers. Environ. Pollut. 2020;257:113581. doi:10.1016/j.envpol.2019.113581. [PubMed] [CrossRef] [Google Scholar]

43. Gill H.K., Garg H. Pesticide: Environmental impacts and management strategies. Pestic. Asp. 2014;8:187. doi:10.5772/57399. [CrossRef] [Google Scholar]

44. Saravi S.S.S., Dehpour A.R. Potential role of organochlorine pesticides in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders: A review. Life Sci. 2016;145:255–264. doi:10.1016/j.lfs.2015.11.006. [PubMed] [CrossRef] [Google Scholar]

45. Saravi S.S.S., Shokrzadeh M. Role of pesticides in human life in the modern age: A review. In: Stoytcheva M., editor. Pesticides in the Modern World-Risks and Benefits. IntechOpen; Rijeka, Croatia: 2011. pp. 3–12. [Google Scholar]

46. Zhang W. Global pesticide use: Profile, trend, cost/benefit and more. Proc. Int. Acad. Ecol. Environ. Sci. 2018;8:1–27. [Google Scholar]

47. Pimentel D. Pesticides and pest control. In: Peshin R., Dhawan A.K., editors. Integrated pest management: Innovation-development process. Springer; Dordrecht, The Netherlands: 2009. pp. 83–87. [Google Scholar]

48. Zhang W.-J., van der Werf W., Pang Y. A simulation model for vegetable-insect pest-insect nucleopolyhedrovirus epidemic system. J. Environ. Entomol. 2011;33:283–301. [Google Scholar]

49. De A., Bose R., Kumar A., Mozumdar S. In: Targeted Delivery of Pesticides Using Biodegradable Polymeric Nanoparticles. De A., Bose R., Kumar A., Mozumdar S., editors. Springer; New Delhi, India: 2014. [Google Scholar]

50. Sharma A., Kumar V., Shahzad B., Tanveer M., Sidhu G.P.S., Handa N., Kohli S.K., Yadav P., Bali A.S., Parihar R.D. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019;1:1446. doi:10.1007/s42452-019-1485-1. [CrossRef] [Google Scholar]

51. Top Pesticide Using Countries. [(accessed on 30 August 2020)]; Available online: https://www.worldatlas.com/articles/top-pesticide-consuming-countries-of-the-world.html

52. Abdel Khalek S.T., Mostafa Z.K., Hassan H.A., Abd El-Bar M.M., Abu El-Hassan G.M.M. A New List to the Entomofauna Associated with Faba Bean, Vicia faba L.(Fabales: Fabaceae) Grown in El-Kharga Oasis, New Valley Governorate, Egypt. Egypt. Acad. J. Biol. Sci. 2018;11:95–100. doi:10.21608/eajb.2018.11901. [CrossRef] [Google Scholar]

53. Gilden R.C., Huffling K., Sattler B. Pesticides and health risks. J. Obstet. Gynecol. Neonatal Nurs. 2010;39:103–110. doi:10.1111/j.1552-6909.2009.01092.x. [PubMed] [CrossRef] [Google Scholar]

54. Drum C. Soil Chemistry of Pesticides. PPG Industries, Inc.; Pittsburgh, PA, USA: 1980. [Google Scholar]

55. Kaur R., Mavi G.K., Raghav S., Khan I. Pesticides classification and its impact on environment. Int. J. Curr. Microbiol. Appl. Sci. 2019;8:1889–1897. doi:10.20546/ijcmas.2019.803.224. [CrossRef] [Google Scholar]

56. Lippmann M., Leikauf G.D. Introduction and background. Environ. Toxicants Hum. Expo. Their Health Eff. 2020:1–40. doi:10.1002/9781119438922.ch1. [CrossRef] [Google Scholar]

57. Yadav I.C., Devi N.L. Pesticides classification and its impact on human and environment. Environ. Sci. Eng. 2017;6:140–158. [Google Scholar]

58. Fishel F.M., Ferrell J.A. Managing pesticide drift. EDIS. 2010;7:118806. [Google Scholar]

59. Katagi T. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. In: Whitacre D.M., editor. Reviews of Environmental Contamination and Toxicology. Springer; New York, NY, USA: 2010. pp. 1–132. [PubMed] [Google Scholar]

60. Lushchak V.I., Matviishyn T.M., Husak V.V., Storey J.M., Storey K.B. Pesticide toxicity: A mechanistic approach. EXCLI J. 2018;17:1101–1136. doi:10.17179/excli2018-1710. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. World Health Organization (WHO) Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. [(accessed on 15 September 2020)];2009 Available online: https://apps.who.int/iris/handle/10665/44188 [PubMed]

62. World Health Organization (WHO) Permissible Limits of Heavy Metals in Soil and Plants. World Health Organization; Geneva, Switzerland: 1996. [Google Scholar]

63. Osmani M., Bani A., Hoxha B. Heavy Metals and Ni Phytoextractionin in the Metallurgical Area Soils in Elbasan. Albanian J. Agric. Sci. 2015;14:414–419. [Google Scholar]

64. Chrastný V., Vaněk A., Teper L., Cabala J., Procházka J., Pechar L., Drahota P., Penížek V., Komárek M., Novák M. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: Effects of land use, type of contamination and distance from pollution source. Environ. Monit. Assess. 2012;184:2517–2536. doi:10.1007/s10661-011-2135-2. [PubMed] [CrossRef] [Google Scholar]

65. Raţiu I.-A., Beldean-Galea M.S., Bocoş-Binţinţan V., Costea D.-D. Priority Pollutants Present in the Tisza River Hydrographic Basin and their Effects on Living Organisms. Jordan J. Chem. 2018;13:15–33. doi:10.47014/13.1.28. [CrossRef] [Google Scholar]

66. Zeng F., Wei W., Li M., Huang R., Yang F., Duan Y. Heavy metal contamination in rice-producing soils of Hunan province, China and potential health risks. Int. J. Environ. Res. Public Health. 2015;12:15584–15593. doi:10.3390/ijerph121215005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Chrastný V., Čadková E., Vaněk A., Teper L., Cabala J., Komárek M. Cadmium isotope fractionation within the soil profile complicates source identification in relation to Pb-Zn mining and smelting processes. Chem. Geol. 2015;405:1–9. doi:10.1016/j.chemgeo.2015.04.002. [CrossRef] [Google Scholar]

68. Liao M., Luo Y.K., Zhao X.M., Huang C.Y. Toxicity of cadmium to soil microbial biomass and its activity: Effect of incubation time on Cd ecological dose in a paddy soil. J. Zhejiang Univ. Sci. 2005;6 B:324–330. doi:10.1631/jzus.2005.B0324. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Raiesi F., Sadeghi E. Interactive effect of salinity and cadmium toxicity on soil microbial properties and enzyme activities. Ecotoxicol. Environ. Saf. 2019;168:221–229. doi:10.1016/j.ecoenv.2018.10.079. [PubMed] [CrossRef] [Google Scholar]

70. Oumenskou H., El Baghdadi M., Barakat A., Aquit M., Ennaji W., Karroum L.A., Aadraoui M. Assessment of the heavy metal contamination using GIS-based approach and pollution indices in agricultural soils from Beni Amir irrigated perimeter, Tadla plain, Morocco. Arab. J. Geosci. 2018;11:692. doi:10.1007/s12517-018-4021-5. [CrossRef] [Google Scholar]

71. An Y.J. Soil ecotoxicity assessment using cadmium sensitive plants. Environ. Pollut. 2004;127:21–26. doi:10.1016/S0269-7491(03)00263-X. [PubMed] [CrossRef] [Google Scholar]

72. Qi X., Xu X., Zhong C., Jiang T., Wei W., Song X. Removal of Cadmium and Lead from Contaminated Soils Using Sophorolipids from Fermentation Culture of Starmerella bombicola CGMCC 1576 Fermentation. Int. J. Environ. Res. Public Health. 2018;15:2334. doi:10.3390/ijerph15112334. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Dotaniya M.L., Dotaniya C.K., Solanki P., Meena V.D., Doutaniya R.K. Lead Contamination and Its Dynamics in Soil–Plant System. In: Gupta D.K., Chatterjee S., Walther C., editors. Lead in Plants and the Environment. Springer; Cham, Switzerland: 2020. pp. 83–98. [Google Scholar]

74. Lan M.M., Liu C., Liu S.J., Qiu R.L., Tang Y.T. Phytostabilization of cd and pb in highly polluted farmland soils using ramie and amendments. Int. J. Environ. Res. Public Health. 2020;17:1661. doi:10.3390/ijerph17051661. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Vega F.A., Andrade M.L., Covelo E.F. Influence of soil properties on the sorption and retention of cadmium, copper and lead, separately and together, by 20 soil horizons: Comparison of linear regression and tree regression analyses. J. Hazard. Mater. 2010;174:522–533. doi:10.1016/j.jhazmat.2009.09.083. [PubMed] [CrossRef] [Google Scholar]

76. Kumar A., Kumar A., Cabral-Pinto M., Chaturvedi A.K., Shabnam A.A., Subrahmanyam G., Mondal R., Gupta D.K., Malyan S.K., Kumar S.S., et al. Lead toxicity: Health hazards, influence on food Chain, and sustainable remediation approaches. Int. J. Environ. Res. Public Health. 2020;17:2179. doi:10.3390/ijerph17072179. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Placek A., Grobelak A., Kacprzak M. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge. Int. J. Phytoremediation. 2016;18:605–618. doi:10.1080/15226514.2015.1086308. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Khan S., Hesham A.E.L., Qiao M., Rehman S., He J.Z. Effects of Cd and Pb on soil microbial community structure and activities. Environ. Sci. Pollut. Res. 2010;17:288–296. doi:10.1007/s11356-009-0134-4. [PubMed] [CrossRef] [Google Scholar]

79. Vlcek V., Pohanka M. Adsorption of copper in soil and its dependence on physical and chemical properties. Acta Univ. Agric. Silvic. Mendelianae Brun. 2018;66:219–224. doi:10.11118/actaun201866010219. [CrossRef] [Google Scholar]

80. Keiblinger K.M., Schneider M., Gorfer M., Paumann M., Deltedesco E., Berger H., Jöchlinger L., Mentler A., Zechmeister-Boltenstern S., Soja G., et al. Assessment of Cu applications in two contrasting soils—effects on soil microbial activity and the fungal community structure. Ecotoxicology. 2018;27:217–233. doi:10.1007/s10646-017-1888-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Brun L.A., Le Corff J., Maillet J. Effects of elevated soil copper on phenology, growth and reproduction of five ruderal plant species. Environ. Pollut. 2003;122:361–368. doi:10.1016/S0269-7491(02)00312-3. [PubMed] [CrossRef] [Google Scholar]

82. Caetano A.L., Marques C.R., Gonçalves F., da Silva E.F., Pereira R. Copper toxicity in a natural reference soil: Ecotoxicological data for the derivation of preliminary soil screening values. Ecotoxicology. 2016;25:163–177. doi:10.1007/s10646-015-1577-7. [PubMed] [CrossRef] [Google Scholar]

83. Cordero I., Snell H., Bardgett R.D. High throughput method for measuring urease activity in soil. Soil Biol. Biochem. 2019;134:72–77. doi:10.1016/j.soilbio.2019.03.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Gülser F., Erdoǧan E. The effects of heavy metal pollution on enzyme activities and basal soil respiration of roadside soils. Environ. Monit. Assess. 2008;145:127–133. doi:10.1007/s10661-007-0022-7. [PubMed] [CrossRef] [Google Scholar]

85. Wang L., Xia X., Zhang W., Wang J., Zhu L., Wang J., Wei Z., Ahmad Z. Separate and joint eco-toxicological effects of sulfadimidine and copper on soil microbial biomasses and ammoxidation microorganisms abundances. Chemosphere. 2019;228:556–564. doi:10.1016/j.chemosphere.2019.04.165. [PubMed] [CrossRef] [Google Scholar]

86. Frenk S., Ben-Moshe T., Dror I., Berkowitz B., Minz D. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS ONE. 2013;8:e84441. doi:10.1371/journal.pone.0084441. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Shaw J.L.A., Ernakovich J.G., Judy J.D., Farrell M., Whatmuff M., Kirby J. Long-term effects of copper exposure to agricultural soil function and microbial community structure at a controlled and experimental field site. Environ. Pollut. 2020;263:114411. doi:10.1016/j.envpol.2020.114411. [PubMed] [CrossRef] [Google Scholar]

88. Njinga R.L., Moyo M.N., Abdulmaliq S.Y. Analysis of Essential Elements for Plants Growth Using Instrumental Neutron Activation Analysis. Int. J. Agron. 2013;2013:1–9. doi:10.1155/2013/156520. [CrossRef] [Google Scholar]

89. Mertens J., Smolders E. Zinc. In: Alloway B.J., editor. Heavy Metals in Soils. Trace Metals and Metalloids in Soils and their Bioavailability. Vol. 22. Springer; Dordrecht, The Netherlands: 2013. pp. 465–493. [Google Scholar]

90. Łukowski A., Dec D. Influence of Zn, Cd, and Cu fractions on enzymatic activity of arable soils. Environ. Monit. Assess. 2018;190:278. doi:10.1007/s10661-018-6651-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Barman H., Das S.K., Roy A. Zinc in Soil Environment for Plant Health and Management Strategy. Univers. J. Agric. Res. 2018;6:149–154. doi:10.13189/ujar.2018.060501. [CrossRef] [Google Scholar]

92. Pietrzykowski M., Antonkiewicz J., Gruba P., Pajak M. Content of Zn, Cd and Pb in purple moor-grass in soils heavily contaminated with heavy metals around a zinc and lead ore tailing landfill. Open Chem. 2018;16:1143–1152. doi:10.1515/chem-2018-0129. [CrossRef] [Google Scholar]

93. Ciarkowska K., Gargiulo L., Mele G. Natural restoration of soils on mine heaps with similar technogenic parent material: A case study of long-term soil evolution in Silesian-Krakow Upland Poland. Geoderma. 2016;261:141–150. doi:10.1016/j.geoderma.2015.07.018. [CrossRef] [Google Scholar]

94. Wyszkowska J., Borowik A., Kucharski M., Kucharski J. Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. J. Elem. 2013;18:769–796. doi:10.5601/jelem.2013.18.4.455. [CrossRef] [Google Scholar]

95. Cabala J., Teper L. Metalliferous constituents of rhizosphere soils contaminated by Zn-Pb mining in southern Poland. Water. Air. Soil Pollut. 2007;178:351–362. doi:10.1007/s11270-006-9203-1. [CrossRef] [Google Scholar]

96. Nazar R., Iqbal N., Masood A., Khan M.I.R., Syeed S., Khan N.A. Cadmium Toxicity in Plants and Role of Mineral Nutrients in Its Alleviation. Am. J. Plant Sci. 2012;03:1476–1489. doi:10.4236/ajps.2012.310178. [CrossRef] [Google Scholar]

97. Shahid M., Pinelli E., Pourrut B., Silvestre J., Dumat C. Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol. Environ. Saf. 2011;74:78–84. doi:10.1016/j.ecoenv.2010.08.037. [PubMed] [CrossRef] [Google Scholar]

98. Wu X., Cobbina S.J., Mao G., Xu H., Zhang Z., Yang L. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ. Sci. Pollut. Res. 2016;23:8244–8259. doi:10.1007/s11356-016-6333-x. [PubMed] [CrossRef] [Google Scholar]

99. Jibril S.A., Hassan S.A., Ishak C.F., Megat Wahab P.E. Cadmium Toxicity Affects Phytochemicals and Nutrient Elements Composition of Lettuce ( Lactuca sativa L.) Adv. Agric. 2017;2017:1–7. doi:10.1155/2017/1236830. [CrossRef] [Google Scholar]

100. Zhou C., Ge N., Guo J., Zhu L., Ma Z., Cheng S., Wang J. Enterobacter asburiae Reduces Cadmium Toxicity in Maize Plants by Repressing Iron Uptake-Associated Pathways. J. Agric. Food Chem. 2019;67:10126–10136. doi:10.1021/acs.jafc.9b03293. [PubMed] [CrossRef] [Google Scholar]

101. Ismael M.A., Elyamine A.M., Moussa M.G., Cai M., Zhao X., Hu C. Cadmium in plants: Uptake, toxicity, and its interactions with selenium fertilizers. Metallomics. 2019;11:255–277. doi:10.1039/C8MT00247A. [PubMed] [CrossRef] [Google Scholar]

102. Feng J., Shi Q., Wang X., Wei M., Yang F., Xu H. Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Sci. Hortic. (Amsterdam). 2010;123:521–530. doi:10.1016/j.scienta.2009.10.013. [CrossRef] [Google Scholar]

103. Schützendübel A., Nikolova P., Rudolf C., Polle A. Cadmium and H2O2-induced oxidative stress in Populus x canescens roots. Plant Physiol. Biochem. 2002;40:577–584. doi:10.1016/S0981-9428(02)01411-0. [CrossRef] [Google Scholar]

104. Hayat M.T., Nauman M., Nazir N., Ali S., Bangash N. Environmental Hazards of Cadmium: Past, Present, and Future. In: Hasanuzzaman M., Prasad M.N.V., Fujita M., editors. Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation. Academic Press; Cambridge, MA, USA: 2018. pp. 163–183. [Google Scholar]

105. Seregin I.V., Kozhevnikova A.D. Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russ. J. Plant Physiol. 2008;55:1–22. doi:10.1134/S1021443708010019. [CrossRef] [Google Scholar]

106. Gratão P.L., Monteiro C.C., Rossi M.L., Martinelli A.P., Peres L.E.P., Medici L.O., Lea P.J., Azevedo R.A. Differential ultrastructural changes in tomato hormonal mutants exposed to cadmium. Environ. Exp. Bot. 2009;67:387–394. doi:10.1016/j.envexpbot.2009.06.017. [CrossRef] [Google Scholar]

107. Vardhan K.H., Kumar P.S., Panda R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019;290:111197. doi:10.1016/j.molliq.2019.111197. [CrossRef] [Google Scholar]

108. Diaconu M., Pavel L.V., Hlihor R.M., Rosca M., Fertu D.I., Lenz M., Corvini P.X., Gavrilescu M. Characterization of heavy metal toxicity in some plants and microorganisms—A preliminary approach for environmental bioremediation. N. Biotechnol. 2020;56:130–139. doi:10.1016/j.nbt.2020.01.003. [PubMed] [CrossRef] [Google Scholar]

109. Uzu G., Sobanska S., Aliouane Y., Pradere P., Dumat C. Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environ. Pollut. 2009;157:1178–1185. doi:10.1016/j.envpol.2008.09.053. [PubMed] [CrossRef] [Google Scholar]

110. Chauhan P., Rajguru A.B., Dudhe M.Y., Mathur J. Efficacy of lead (Pb) phytoextraction of five varieties of Helianthus annuus L. from contaminated soil. Environ. Technol. Innov. 2020;18:100718. doi:10.1016/j.eti.2020.100718. [CrossRef] [Google Scholar]

111. Gupta N., Yadav K.K., Kumar V., Kumar S., Chadd R.P., Kumar A. Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration - A review. Sci. Total Environ. 2019;651:2927–2942. doi:10.1016/j.scitotenv.2018.10.047. [PubMed] [CrossRef] [Google Scholar]

112. Ashraf U., Kanu A.S., Deng Q., Mo Z., Pan S., Tian H., Tang X. Lead (Pb) toxicity; physio-biochemical mechanisms, grain yield, quality, and Pb distribution proportions in scented rice. Front. Plant Sci. 2017;8:259. doi:10.3389/fpls.2017.00259. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Ashraf U., Kanu A.S., Mo Z., Hussain S., Anjum S.A., Khan I., Abbas R.N., Tang X. Lead toxicity in rice: Effects, mechanisms, and mitigation strategies—a mini review. Environ. Sci. Pollut. Res. 2015;22:18318–18332. doi:10.1007/s11356-015-5463-x. [PubMed] [CrossRef] [Google Scholar]

114. Gichner T., Žnidar I., Száková J. Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mutat. Res. - Genet. Toxicol. Environ. Mutagen. 2008;652:186–190. doi:10.1016/j.mrgentox.2008.02.009. [PubMed] [CrossRef] [Google Scholar]

115. Reddy A.M., Kumar S.G., Jyothsnakumari G., Thimmanaik S., Sudhakar C. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.) Chemosphere. 2005;60:97–104. doi:10.1016/j.chemosphere.2004.11.092. [PubMed] [CrossRef] [Google Scholar]

116. Ali M., Nas F.S. The effect of lead on plants in terms of growing and biochemical parameters: A review. MOJ Ecol. Environ. Sci. 2018;3:265–268. doi:10.15406/mojes.2018.03.00098. [CrossRef] [Google Scholar]

117. Cimrin K.M., Turan M., Kapur B. Effect of elemental sulphur on heavy metals solubility and remediation by plants in calcareous soils. Fresenius Environ. Bull. 2007;16:1113–1120. [Google Scholar]

118. Hamid N., Bukhari N., Jawaid F. Physiological responses of Phaseolus vulgaris to different lead concentrations. Pakistan J. Bot. 2010;42:239–246. [Google Scholar]

119. Kushwaha A., Hans N., Kumar S., Rani R. A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol. Environ. Saf. 2018;147:1035–1045. doi:10.1016/j.ecoenv.2017.09.049. [PubMed] [CrossRef] [Google Scholar]

120. Wuana R.A., Okieimen F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011;2011:1–20. doi:10.5402/2011/402647. [CrossRef] [Google Scholar]

121. Chiou W.Y., Hsu F.C. Copper toxicity and prediction models of copper content in leafy vegetables. Sustainability. 2019;11:6215. doi:10.3390/su11226215. [CrossRef] [Google Scholar]

122. Bjuhr J. Trace metals in soils irrigated with waste water in a periurban area downstream Hanoi City, Vietnam. Semin. Pap. 2007:1–50. [Google Scholar]

123. Kopittke P.M., Menzies N.W., de Jonge M.D., Mckenna B.A., Donner E., Webb R.I., Paterson D.J., Howard D.L., Ryan C.G., Glover C.J., et al. In situ distribution and speciation of toxic copper, nickel, and zinc in hydrated roots of cowpea. Plant Physiol. 2011;156:663–673. doi:10.1104/pp.111.173716. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Adrees M., Ali S., Rizwan M., Ibrahim M., Abbas F., Farid M., Zia-ur-Rehman M., Irshad M.K., Bharwana S.A. The effect of excess copper on growth and physiology of important food crops: A review. Environ. Sci. Pollut. Res. 2015;22:8148–8162. doi:10.1007/s11356-015-4496-5. [PubMed] [CrossRef] [Google Scholar]

125. Barbosa R.H., Tabaldi L.A., Miyazaki F.R., Pilecco M., Kassab S.O., Bigaton D. Absorção foliar de cobre por plantas de milho: Efeitos no crescimento e rendimento. Cienc. Rural. 2013;43:1561–1568. doi:10.1590/S0103-84782013000900005. [CrossRef] [Google Scholar]

126. Aly A.A., Mohamed A.A. The impact of copper ion on growth, thiol compounds and lipid peroxidation in two maize cultivars (Zea mays L.) grown in vitro. Aust. J. Crop Sci. 2012;6:541–549. [Google Scholar]

127. Song C., Yan Y., Rosado A., Zhang Z., Castellarin S.D. ABA alleviates uptake and accumulation of zinc in grapevine (Vitis vinifera l.) by inducing expression of ZIP and detoxification-related genes. Front. Plant Sci. 2019;10:872. doi:10.3389/fpls.2019.00872. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Broadley M.R., White P.J., Hammond J.P., Zelko I., Lux A. Zinc in plants: Tansley review. New Phytol. 2007;173:677–702. doi:10.1111/j.1469-8137.2007.01996.x. [PubMed] [CrossRef] [Google Scholar]

129. Hafeez B. Role of Zinc in Plant Nutrition- A Review. Am. J. Exp. Agric. 2013;3:374–391. doi:10.9734/AJEA/2013/2746. [CrossRef] [Google Scholar]

130. Liang J., Yang W. Effects of Zinc and Copper Stress on Antioxidant System of Olive Leaves. IOP Conf. Ser. Earth Environ. Sci. 2019;300:52058. doi:10.1088/1755-1315/300/5/052058. [CrossRef] [Google Scholar]

131. Ebbs S.D., Kochian L.V. Toxicity of Zinc and Copper to Brassica Species: Implications for Phytoremediation. J. Environ. Qual. 1997;26:776–781. doi:10.2134/jeq1997.00472425002600030026x. [CrossRef] [Google Scholar]

132. Hammerschmitt R.K., Tiecher T.L., Facco D.B., Silva L.O.S., Schwalbert R., Drescher G.L., Trentin E., Somavilla L.M., Kulmann M.S.S., Silva I.C.B., et al. Copper and zinc distribution and toxicity in ‘Jade’ / ‘Genovesa’ young peach tree. Sci. Hortic. 2020;259:108763. doi:10.1016/j.scienta.2019.108763. [CrossRef] [Google Scholar]

133. Balafrej H., Bogusz D., Abidine Triqui Z.E., Guedira A., Bendaou N., Smouni A., Fahr M. Zinc hyperaccumulation in plants: A review. Plants. 2020;9:562. doi:10.3390/plants9050562. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Loi N.N., Sanzharova N.I., Shchagina N.I., Mironova M.P. The Effect of Cadmium Toxicity on the Development of Lettuce Plants on Contaminated Sod-Podzolic Soil. Russ. Agric. Sci. 2018;44:49–52. doi:10.3103/S1068367418010111. [CrossRef] [Google Scholar]

135. Kabata-Pendias A. Trace Elements in Plants. In: Kabata-Pendias A., editor. Trace Elements in Soils and Plants Fourth Edition. CRC Press (Taylor and Francis Group); Boca Raton, FL, USA: 2010. pp. 93–122. [Google Scholar]

136. Zhou J., Zhang Z., Zhang Y., Wei Y., Jiang Z. Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings. PLoS ONE. 2018;13:e0191139. doi:10.1371/journal.pone.0191139. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Panagos P., Ballabio C., Lugato E., Jones A., Borrelli P., Scarpa S., Orgiazzi A., Montanarella L. Potential Sources of Anthropogenic Copper Inputs to European Agricultural Soils. Sustainability. 2018;10:2380. doi:10.3390/su10072380. [CrossRef] [Google Scholar]

138. Guan Q., Wang F., Xu C., Pan N., Lin J., Zhao R., Yang Y., Luo H. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere. 2018;193:189–197. doi:10.1016/j.chemosphere.2017.10.151. [PubMed] [CrossRef] [Google Scholar]

139. Plum L.M., Rink L., Haase H. The Essential Toxin: Impact of Zinc on Human Health. Int. J. Environ. Res. Public Health. 2010;7:1342–1365. doi:10.3390/ijerph7041342. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

140. Paoli D., Giannandrea F., Gallo M., Turci R., Cattaruzza M.S., Lombardo F., Lenzi A., Gandini L. Exposure to polychlorinated biphenyls and hexachlorobenzene, sem*n quality and testicular cancer risk. J. Endocrinol. Invest. 2015;38:745–752. doi:10.1007/s40618-015-0251-5. [PubMed] [CrossRef] [Google Scholar]

141. World Health Organization (WHO) Agrochemicals, Health and Environment: Directory of Resources. [(accessed on 24 October 2020)];2017 Available online: https://www.who.int/heli/risks/toxics/chemicalsdirectory/en/

142. El-Wakeil N., Gaafar N., Sallam A., Volkmar C. Side Effects of Insecticides on Natural Enemies and Possibility of Their Integration in Plant Protection Strategies. In: Trdan S., editor. Insecticides - Development of Safer and More Effective Technologies. IntechOpen; London, UK: 2013. pp. 1–56. [Google Scholar]

143. Zaka S.M., Iqbal N., Saeed Q., Akrem A., Batool M., Khan A.A., Anwar A., Bibi M., Azeem S., Rizvi D.E.N., et al. Toxic effects of some insecticides, herbicides, and plant essential oils against Tribolium confusum Jacquelin du val (Insecta: Coleoptera: Tenebrionidae) Saudi J. Biol. Sci. 2019;26:1767–1771. doi:10.1016/j.sjbs.2018.05.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

144. Ligor M., Bukowska M., Ratiu I.-A., Gadzała-Kopciuch R., Buszewski B. Determination of Neonicotinoids in Honey Samples Originated from Poland and Other World Countries. Molecules. 2020;25:5817. doi:10.3390/molecules25245817. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

145. Sharma A., Kumar V., Thukral A.K., Bhardwaj R. Responses of plants to pesticide toxicity: An overview. Planta Daninha. 2019;37:e019184291. doi:10.1590/s0100-83582019370100065. [CrossRef] [Google Scholar]

146. Sharma A., Kumar V., Kumar R., Shahzad B., Thukral A.K., Bhardwaj R., Tejada Moral M. Brassinosteroid-mediated pesticide detoxification in plants: A mini-review. Cogent Food Agric. 2018;4:1436212. doi:10.1080/23311932.2018.1436212. [CrossRef] [Google Scholar]

147. Biondi A., Desneux N., Siscaro G., Zappalà L. Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: Selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere. 2012;87:803–812. doi:10.1016/j.chemosphere.2011.12.082. [PubMed] [CrossRef] [Google Scholar]

148. Han Y., Mo R., Yuan X., Zhong D., Tang F., Ye C., Liu Y. Pesticide residues in nut-planted soils of China and their relationship between nut/soil. Chemosphere. 2017;180:42–47. doi:10.1016/j.chemosphere.2017.03.138. [PubMed] [CrossRef] [Google Scholar]

149. Nannipieri P., Ascher J., Ceccherini M., Landi L., Pietramellara G., Renella G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003;54:655–670. doi:10.1046/j.1351-0754.2003.0556.x. [CrossRef] [Google Scholar]

150. Filimon M.N., Voia S.O., Popescu R., Dumitrescu G., Ciochina L.P., Mituletu M., Vlad D.C. The effect of some insecticides on soil microorganisms based on enzymatic and bacteriological analyses. Rom. Biotechnol. Lett. 2015;20:10439–10447. [Google Scholar]

151. AL-Ani M.A.M., Hmoshi R.M., Kanaan I.A., Thanoon A.A. Effect of pesticides on soil microorganisms. J. Phys. Conf. Ser. 2019;1294:072007. doi:10.1088/1742-6596/1294/7/072007. [CrossRef] [Google Scholar]

152. Yousaf S., Khan S., Aslam M.T. Effect of pesticides on the soil microbial activity. Pak. J. Zool. 2013;45:1063–1067. [Google Scholar]

153. Goswami M.R., Pati U.K., Chowdhury A., Mukhopadhyay A. Studies on the effect of cypermethrin on soil microbial biomass and its activity in an alluvial soil. Int. J. Agric. Food Sci. 2013;3:1–9. [Google Scholar]

154. Haleem A.M., Kasim S.A., Al-Timimy J.A. Effect of some organophosphorous insecticides on soil microorganisms populations under lab condition. World Environ. 2013;3:170–173. doi:10.5923/j.env.20130305.05. [CrossRef] [Google Scholar]

155. Madhaiyan M., Poonguzhali S., Hari K., Saravanan V.S., Sa T. Influence of pesticides on the growth rate and plant-growth promoting traits of Gluconacetobacter diazotrophicus. Pestic. Biochem. Physiol. 2006;84:143–154. doi:10.1016/j.pestbp.2005.06.004. [CrossRef] [Google Scholar]

156. Sannino F., Gianfreda L. Pesticide influence on soil enzymatic activities. Chemosphere. 2001;45:417–425. doi:10.1016/S0045-6535(01)00045-5. [PubMed] [CrossRef] [Google Scholar]

157. Pandey S., Singh D.K. Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soil. Chemosphere. 2004;55:197–205. doi:10.1016/j.chemosphere.2003.10.014. [PubMed] [CrossRef] [Google Scholar]

158. Niewiadomska A., Sawicka A. Effect of Carbendazim, Imazetapir and Thiram on Nitrogenase Activity, Number of Microorganisms in Soil and Yield of Hybrid Lucerne (Medicago media) Polish J. Environ. Stud. 2002;11:737–744. [Google Scholar]

159. Madhuri R.J., Rangaswamy V. Influence of selected insecticides on phosphatase activity in groundnut (Arachis hypogeae L.) soils. J. Environ. Biol. 2002;23:393–397. [PubMed] [Google Scholar]

160. Mayanglambam T., Vig K., Singh D.K. Quinalphos persistence and leaching under field conditions and effects of residues on dehydrogenase and alkaline phosphom*onoesterases activities in soil. Bull. Environ. Contam. Toxicol. 2005;75:1067–1076. doi:10.1007/s00128-005-0858-x. [PubMed] [CrossRef] [Google Scholar]

161. Milošević N.A., Govedarica M.M. Effect of herbicides on microbiological properties of soil. Zb. Matice Srp. za Prir. Nauk. 2002:5–21. doi:10.2298/ZMSPN0201005M. [CrossRef] [Google Scholar]

162. Kremer R.J., Means N.E. Glyphosate and glyphosate-resistant crop interactions with rhizosphere microorganisms. Eur. J. Agron. 2009;31:153–161. doi:10.1016/j.eja.2009.06.004. [CrossRef] [Google Scholar]

163. Chen F., Dixon R.A. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 2007;25:759–761. doi:10.1038/nbt1316. [PubMed] [CrossRef] [Google Scholar]

164. Mishra P.K., Ekielski A. The self-assembly of lignin and its application in nanoparticle synthesis: A short review. Nanomaterials. 2019;9:243. doi:10.3390/nano9020243. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

165. Hussain S., Siddique T., Saleem M., Arshad M., Khalid A. Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Adv. Agron. 2009;102:159–200. doi:10.1016/S0065-2113(09)01005-0. [CrossRef] [Google Scholar]

166. Arif M.A.S., Houwen F., Verstraete W. Agricultural factors affecting methane oxidation in arable soil. Biol. Fertil. Soils. 1996;21:95–102. doi:10.1007/BF00335999. [CrossRef] [Google Scholar]

167. Fabra A., Duffard R., De Duffard A.E. Toxicity of 2, 4-dichlorophenoxyacetic acid to Rhizobium sp in pure culture. Bull. Environ. Contam. Toxicol. 1997;59:645–652. doi:10.1007/s001289900528. [PubMed] [CrossRef] [Google Scholar]

168. Chalam A.V., Sasikala C., Ramana C.V., Uma N.R., Rao P.R. Effect of pesticides on the diazotrophic growth and nitrogenase activity of purple nonsulfur bacteria. Bull. Environ. Contam. Toxicol. 1997;58:463–468. doi:10.1007/s001289900357. [PubMed] [CrossRef] [Google Scholar]

169. Santos A., Flores M. Effects of glyphosate on nitrogen fixation of free-living heterotrophic bacteria. Lett. Appl. Microbiol. 1995;20:349–352. doi:10.1111/j.1472-765X.1995.tb01318.x. [CrossRef] [Google Scholar]

170. Guo P., Zhu L., Wang J., Wang J., Xie H., Lv D. Enzymatic activities and microbial biomass in black soil as affected by azoxystrobin. Environ. Earth Sci. 2015;74:1353–1361. doi:10.1007/s12665-015-4126-z. [CrossRef] [Google Scholar]

171. Chatterjee N.S., Gupta S., Varghese E. Degradation of metaflumizone in soil: Impact of varying moisture, light, temperature, atmospheric CO2 level, soil type and soil sterilization. Chemosphere. 2013;90:729–736. doi:10.1016/j.chemosphere.2012.09.057. [PubMed] [CrossRef] [Google Scholar]

172. Wightwick A.M., Reichman S.M., Menzies N.W., Allinson G. The effects of copper hydroxide, captan and trifloxystrobin fungicides on soil phosphom*onoesterase and urease activity. Water Air, Soil Pollut. 2013;224:1703. doi:10.1007/s11270-013-1703-1. [CrossRef] [Google Scholar]

173. Baćmaga M., Kucharski J., Wyszkowska J. Microbial and enzymatic activity of soil contaminated with azoxystrobin. Environ. Monit. Assess. 2015;187:615. doi:10.1007/s10661-015-4827-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

174. Baćmaga M., Wyszkowska J., Kucharski J. The effect of the Falcon 460 EC fungicide on soil microbial communities, enzyme activities and plant growth. Ecotoxicology. 2016;25:1575–1587. doi:10.1007/s10646-016-1713-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

175. Adams G.O., Fufeyin P.T., Okoro S.E., Ehinomen I. Bioremediation, biostimulation and bioaugmention: A review. Int. J. Environ. Bioremediation Biodegrad. 2015;3:28–39. doi:10.12691/ijebb-3-1-5. [CrossRef] [Google Scholar]

176. Baćmaga M., Wyszkowska J., Kucharski J. The influence of chlorothalonil on the activity of soil microorganisms and enzymes. Ecotoxicology. 2018;27:1188–1202. doi:10.1007/s10646-018-1968-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

177. Saha A., Pipariya A., Bhaduri D. Enzymatic activities and microbial biomass in peanut field soil as affected by the foliar application of tebuconazole. Environ. Earth Sci. 2016;75:558. doi:10.1007/s12665-015-5116-x. [CrossRef] [Google Scholar]

178. Sharma A., Kumar V., Kohli S.K., Thukral A.K., Bhardwaj R. Phytochemicals in Brassica juncea L. seedlings under imidacloprid-epibrassinolide treatment using GC-MS. J. Chem. Pharm. Res. 2015;7:708–711. [Google Scholar]

179. Parween T., Jan S., Fatma T. Alteration in nitrogen metabolism and plant growth during different developmental stages of green gram (Vigna radiata L.) in response to chlorpyrifos. Acta Physiol. Plant. 2011;33:2321–2328. doi:10.1007/s11738-011-0772-2. [CrossRef] [Google Scholar]

180. Parween T., Jan S., Fatma T. Evaluation of oxidative stress in Vigna radiata L. in response to chlorpyrifos. Int. J. Environ. Sci. Technol. 2012;9:605–612. doi:10.1007/s13762-012-0095-x. [CrossRef] [Google Scholar]

181. Sharma A., Kumar V., Singh R., Thukral A.K., Bhardwaj R. 24-Epibrassinolide induces the synthesis of phytochemicals effected by imidacloprid pesticide stress in Brassica juncea L. J. Pharmacogn. Phytochem. 2015;4:60–64. [Google Scholar]

182. Boutin C., Strandberg B., Carpenter D., Mathiassen S.K., Thomas P.J. Herbicide impact on non-target plant reproduction: What are the toxicological and ecological implications? Environ. Pollut. 2014;185:295–306. doi:10.1016/j.envpol.2013.10.009. [PubMed] [CrossRef] [Google Scholar]

183. Kaya A., Yigit E. The physiological and biochemical effects of salicylic acid on sunflowers (Helianthus annuus) exposed to flurochloridone. Ecotoxicol. Environ. Saf. 2014;106:232–238. doi:10.1016/j.ecoenv.2014.04.041. [PubMed] [CrossRef] [Google Scholar]

184. Kaya A., Doganlar Z.B. Exogenous jasmonic acid induces stress tolerance in tobacco (Nicotiana tabacum) exposed to imazapic. Ecotoxicol. Environ. Saf. 2016;124:470–479. doi:10.1016/j.ecoenv.2015.11.026. [PubMed] [CrossRef] [Google Scholar]

185. Fernandes B., Soares C., Braga C., Rebotim A., Ferreira R., Ferreira J., Fidalgo F., Pereira R., Cachada A. Ecotoxicological Assessment of a Glyphosate-Based Herbicide in Cover Plants: Medicago sativa L. as a Model Species. Appl. Sci. 2020;10:5098. doi:10.3390/app10155098. [CrossRef] [Google Scholar]

186. Chen S., Yang L., Hu M., Liu J. Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophom*onas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Appl. Microbiol. Biotechnol. 2011;90:755–767. doi:10.1007/s00253-010-3035-z. [PubMed] [CrossRef] [Google Scholar]

187. Jezierska-Tys S., Rutkowska A. Soil response to chemicals used in a field experiment. Int. Agrophys. 2013;27:151–158. doi:10.2478/v10247-012-0080-0. [CrossRef] [Google Scholar]

188. Zhou Y., Xia X., Yu G., Wang J., Wu J., Wang M., Yang Y., Shi K., Yu Y., Chen Z. Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Sci. Rep. 2015;5:9018. doi:10.1038/srep09018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

189. Xia X.J., Huang Y.Y., Wang L., Huang L.F., Yu Y.L., Zhou Y.H., Yu J.Q. Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. Pestic. Biochem. Physiol. 2006;86:42–48. doi:10.1016/j.pestbp.2006.01.005. [CrossRef] [Google Scholar]

190. Ijaz M., Mahmood K., Honermeier B. Interactive role of fungicides and plant growth regulator (Trinexapac) on seed yield and oil quality of winter rapeseed. Agronomy. 2015;5:435–446. doi:10.3390/agronomy5030435. [CrossRef] [Google Scholar]

191. Shahid M., Ahmed B., Zaidi A., Khan M.S. Toxicity of fungicides to Pisum sativum: A study of oxidative damage, growth suppression, cellular death and morpho-anatomical changes. RSC Adv. 2018;8:38483–38498. doi:10.1039/C8RA03923B. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

192. Ahemad M., Khan M.S. Assessment of plant growth promoting activities of rhizobacterium Pseudomonas putida under insecticide-stress. Microbiol. J. 2011;2:54–64. doi:10.3923/mj.2011.54.64. [CrossRef] [Google Scholar]

193. Ahemad M., Khan M.S. Comparative toxicity of selected insecticides to pea plants and growth promotion in response to insecticide-tolerant and plant growth promoting Rhizobium leguminosarum. Crop Prot. 2010;29:325–329. doi:10.1016/j.cropro.2010.01.005. [CrossRef] [Google Scholar]

194. Saladin G., Clément C. Physiological Side Effects of Pesticides on Non-target Plants. In: Livingston J.V., editor. Agriculture and Soil Pollution: New Research. Nova Science Publishers, Inc.; Hauppauge, NY, USA: 2005. pp. 53–86. [Google Scholar]

195. Petit A.N., Fontaine F., Vatsa P., Clément C., Vaillant-Gaveau N. Fungicide impacts on photosynthesis in crop plants. Photosynth. Res. 2012;111:315–326. doi:10.1007/s11120-012-9719-8. [PubMed] [CrossRef] [Google Scholar]

196. Sáez F., Pozo C., Gómez M.A., Martínez-Toledo M.V., Rodelas B., Gónzalez-López J. Growth and denitrifying activity of Xanthobacter autotrophicus CECT 7064 in the presence of selected pesticides. Appl. Microbiol. Biotechnol. 2006;71:563–567. doi:10.1007/s00253-005-0182-8. [PubMed] [CrossRef] [Google Scholar]

197. Kanissery R., Gairhe B., Kadyampakeni D., Batuman O., Alferez F. Glyphosate: Its Environmental Persistence and Impact on Crop Health and Nutrition. Plants. 2019;8:499. doi:10.3390/plants8110499. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

198. Uwizeyimana H., Wang M., Chen W., Khan K. The eco-toxic effects of pesticide and heavy metal mixtures towards earthworms in soil. Environ. Toxicol. Pharmacol. 2017;55:20–29. doi:10.1016/j.etap.2017.08.001. [PubMed] [CrossRef] [Google Scholar]

199. Chen C., Wang Y., Qian Y., Zhao X., Wang Q. The synergistic toxicity of the multiple chemical mixtures: Implications for risk assessment in the terrestrial environment. Environ. Int. 2015;77:95–105. doi:10.1016/j.envint.2015.01.014. [PubMed] [CrossRef] [Google Scholar]

200. Wang Y., Chen C., Qian Y., Zhao X., Wang Q. Ternary toxicological interactions of insecticides, herbicides, and a heavy metal on the earthworm Eisenia fetida. J. Hazard. Mater. 2015;284:233–240. doi:10.1016/j.jhazmat.2014.11.017. [PubMed] [CrossRef] [Google Scholar]

201. Chen Y.X., Lin Q., He Y.F., Tian G.M. Behavior of Cu and Zn under combined pollution of 2,4-dichlorophenol in the planted soil. Plant Soil. 2004;261:127–134. doi:10.1023/B:PLSO.0000035581.92021.f2. [CrossRef] [Google Scholar]

202. Chao L., Zhou Q.X., Chen S., Cui S., Wang M.E. Single and joint stress of acetochlor and Pb on three agricultural crops in northeast China. J. Environ. Sci. 2007;19:719–724. doi:10.1016/S1001-0742(07)60120-X. [PubMed] [CrossRef] [Google Scholar]

203. Divisekara T., Navaratne A.N., Abeysekara A.S.K. Impact of a commercial glyphosate formulation on adsorption of Cd(II) and Pb(II) ions on paddy soil. Chemosphere. 2018;198:334–341. doi:10.1016/j.chemosphere.2018.01.155. [PubMed] [CrossRef] [Google Scholar]

204. Liang J., Zhou Q. Single and Binary-Combined Toxicity of Methamidophos, Acetochlor and Copper Acting on Earthworms Esisenia Foelide. Bull. Environ. Contam. Toxicol. 2003;71:1158–1166. doi:10.1007/s00128-003-0228-5. [PubMed] [CrossRef] [Google Scholar]

205. Liu J., Xie J., Chu Y., Sun C., Chen C., Wang Q. Combined effect of cypermethrin and copper on catalase activity in soil. J. Soils Sediments. 2008;8:327–332. doi:10.1007/s11368-008-0029-x. [CrossRef] [Google Scholar]

206. García-Gómez C., Babín M., García S., Almendros P., Pérez R.A., Fernández M.D. Joint effects of zinc oxide nanoparticles and chlorpyrifos on the reproduction and cellular stress responses of the earthworm Eisenia andrei. Sci. Total Environ. 2019;688:199–207. doi:10.1016/j.scitotenv.2019.06.083. [PubMed] [CrossRef] [Google Scholar]

207. Huang H., Xiong Z.T. Toxic effects of cadmium, acetochlor and bensulfuron-methyl on nitrogen metabolism and plant growth in rice seedlings. Pestic. Biochem. Physiol. 2009;94:64–67. doi:10.1016/j.pestbp.2009.04.003. [CrossRef] [Google Scholar]

208. Liu N., Zhong G., Zhou J., Liu Y., Pang Y., Cai H., Wu Z. Separate and combined effects of glyphosate and copper on growth and antioxidative enzymes in Salvinia natans (L.) All. Sci. Total Environ. 2019;655:1448–1456. doi:10.1016/j.scitotenv.2018.11.213. [PubMed] [CrossRef] [Google Scholar]

209. Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi:10.1016/j.plaphy.2010.08.016. [PubMed] [CrossRef] [Google Scholar]

210. Abouziena H.F., Elmergawi R.A., Sharma S., Omar A.A., Singh M. Zinc Antagonizes Glyphosate Efficacy on Yellow Nutsedge ( Cyperus esculentus ) Weed Sci. 2009;57:16–20. doi:10.1614/WS-08-084.1. [CrossRef] [Google Scholar]

211. Khlifi R., Hamza-Chaffai A. Head and neck cancer due to heavy metal exposure via tobacco smoking and professional exposure: A review. Toxicol. Appl. Pharmacol. 2010;248:71–88. doi:10.1016/j.taap.2010.08.003. [PubMed] [CrossRef] [Google Scholar]

212. Sankhla M.S., Kumar R. Contaminant of Heavy Metals in Groundwater & its Toxic Effects on Human Health & Environment. Int. J. Environ. Sci. Nat. Resour. 2019;18:555996. doi:10.2139/ssrn.3490718. [CrossRef] [Google Scholar]

213. Jiang X., Zou B., Feng H., Tang J., Tu Y., Zhao X. Spatial distribution mapping of Hg contamination in subclass agricultural soils using GIS enhanced multiple linear regression. J. Geochemical Explor. 2019;196:1–7. doi:10.1016/j.gexplo.2018.10.002. [CrossRef] [Google Scholar]

214. Xiao R., Guo D., Ali A., Mi S., Liu T., Ren C., Li R., Zhang Z. Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils: A case study in Hanzhong, Shaanxi, China. Environ. Pollut. 2019;248:349–357. doi:10.1016/j.envpol.2019.02.045. [PubMed] [CrossRef] [Google Scholar]

215. Lamas G.A., Navas-Acien A., Mark D.B., Lee K.L. Heavy Metals, Cardiovascular Disease, and the Unexpected Benefits of Chelation Therapy. J. Am. Coll. Cardiol. 2016;67:2411–2418. doi:10.1016/j.jacc.2016.02.066. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

216. Ma Y., Egodawatta P., McGree J., Liu A., Goonetilleke A. Human health risk assessment of heavy metals in urban stormwater. Sci. Total Environ. 2016;557:764–772. doi:10.1016/j.scitotenv.2016.03.067. [PubMed] [CrossRef] [Google Scholar]

217. Wang F., Guan Q., Tian J., Lin J., Yang Y., Yang L., Pan N. Contamination characteristics, source apportionment, and health risk assessment of heavy metals in agricultural soil in the Hexi Corridor. CATENA. 2020;191:104573. doi:10.1016/j.catena.2020.104573. [CrossRef] [Google Scholar]

218. Yang F., Massey I.Y. Exposure routes and health effects of heavy metals on children. Biometals. 2019;32:563–573. doi:10.1007/s10534-019-00193-5. [PubMed] [CrossRef] [Google Scholar]

219. Chunhabundit R. Cadmium exposure and potential health risk from foods in contaminated area, Thailand. Toxicol. Res. 2016;32:65–72. doi:10.5487/TR.2016.32.1.065. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

220. Schoeters G., HOND E.D.E.N., Zuurbier M., Naginiene R., Van den Hazel P., Stilianakis N., Ronchetti R., Koppe J.G. Cadmium and children: Exposure and health effects. Acta Paediatr. 2006;95:50–54. doi:10.1080/08035320600886232. [PubMed] [CrossRef] [Google Scholar]

221. Sherief L.M., Abdelkhalek E.R., Gharieb A.F., Sherbiny H.S., Usef D.M., Almalky M.A.A., Kamal N.M., Salama M.A., Gohar W. Cadmium status among pediatric cancer patients in Egypt. Medicine (Baltimore) 2015;94 doi:10.1097/MD.0000000000000740. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

222. Gardner R.M., Kippler M., Tofail F., Bottai M., Hamadani J., Grandér M., Nermell B., Palm B., Rasmussen K.M., Vahter M. Environmental exposure to metals and children’s growth to age 5 years: A prospective cohort study. Am. J. Epidemiol. 2013;177:1356–1367. doi:10.1093/aje/kws437. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

223. Maret W. The Bioinorganic Chemistry of Lead in the Context of Its Toxicity. In: Sigel A., Sigel H., Sigel R.K.O., editors. Lead: Its Effects on Environment and Health. Vol. 17. De Gruyter; Berlin, Germany: 2017. pp. 1–20. [Google Scholar]

224. McMichael J.R., Stoff B.K. Surma eye cosmetic in Afghanistan: A potential source of lead toxicity in children. Eur. J. Pediatr. 2018;177:265–268. doi:10.1007/s00431-017-3056-z. [PubMed] [CrossRef] [Google Scholar]

225. Evens A., Hryhorczuk D., Lanphear B.P., Rankin K.M., Lewis D.A., Forst L., Rosenberg D. The impact of low-level lead toxicity on school performance among children in the Chicago Public Schools: A population-based retrospective cohort study. Environ. Health. 2015;14:21. doi:10.1186/s12940-015-0008-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

226. Pfadenhauer L.M., Burns J., Rohwer A., Rehfuess E.A. A protocol for a systematic review of the effectiveness of interventions to reduce exposure to lead through consumer products and drinking water. Syst. Rev. 2014;3:36. doi:10.1186/2046-4053-3-36. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

227. Johnson W.T. Nutritional neuroscience. In: Lieberman H.R., Kanarek R.B., Prasad C., editors. Nutritional Neuroscience. CRC Press (Taylor and Francis Group); Boca Raton, FL, USA: 2005. pp. 289–305. [Google Scholar]

228. Zhou G., Ji X., Cui N., Cao S., Liu C., Liu J. Association between serum copper status and working memory in schoolchildren. Nutrients. 2015;7:7185–7196. doi:10.3390/nu7095331. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

229. Roberts E.A., Socha P. Wilson disease in children. In: Członkowska A., Schilsky M.L., editors. Handbook of clinical neurology. Vol. 142. Elsevier B.V.; Amsterdam, The Netherlands: 2017. pp. 141–156. [PubMed] [Google Scholar]

230. Arsenault J.E., Brown K.H. Zinc intake of US preschool children exceeds new dietary reference intakes. Am. J. Clin. Nutr. 2003;78:1011–1017. doi:10.1093/ajcn/78.5.1011. [PubMed] [CrossRef] [Google Scholar]

231. Black J.L., Piñero D.J., Parekh N. Zinc and cognitive development in children: Perspectives from international studies. Top. Clin. Nutr. 2009;24:130–138. doi:10.1097/TIN.0b013e3181a6b947. [CrossRef] [Google Scholar]

232. Shaikhkhalil A.K., Curtiss J., Puthoff T.D., Valentine C.J. Enteral zinc supplementation and growth in extremely-low-birth-weight infants with chronic lung disease. J. Pediatr. Gastroenterol. Nutr. 2014;58:183. doi:10.1097/MPG.0000000000000145. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

233. Jeejeebhoy K. Zinc: An essential trace element for parenteral nutrition. Gastroenterology. 2009;137:S7–S12. doi:10.1053/j.gastro.2009.08.014. [PubMed] [CrossRef] [Google Scholar]

234. Lim K.H.C., Riddell L.J., Nowson C.A., Booth A.O., Szymlek-Gay E.A. Iron and zinc nutrition in the economically-developed world: A review. Nutrients. 2013;5:3184–3211. doi:10.3390/nu5083184. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

235. Chandra R.K. Excessive intake of zinc impairs immune responses. JAMA. 1984;252:1443–1446. doi:10.1001/jama.1984.03350110043027. [PubMed] [CrossRef] [Google Scholar]

236. Willoughby J.L., Bowen C.N. Zinc deficiency and toxicity in pediatric practice. Curr. Opin. Pediatr. 2014;26:579–584. doi:10.1097/MOP.0000000000000132. [PubMed] [CrossRef] [Google Scholar]

237. Avenant-Oldewage A., Marx H.M. Bioaccumulation of chromium, copper and iron in the organs and tissues of Clarias gariepinus in the Olifants River, Kruger National Park. Water SA. 2000;26:569–582. [Google Scholar]

238. Jiang L.-F., Yao T.-M., Zhu Z.-L., Wang C., Ji L.-N. Impacts of Cd (II) on the conformation and self-aggregation of Alzheimer’s tau fragment corresponding to the third repeat of microtubule-binding domain. Biochim. Biophys. Acta-Proteins Proteomics. 2007;1774:1414–1421. doi:10.1016/j.bbapap.2007.08.014. [PubMed] [CrossRef] [Google Scholar]

239. Reyes-Hinojosa D., Lozada-Pérez C.A., Cuevas Y.Z., López-Reyes A., Martínez-Nava G., Fernández-Torres J., Olivos-Meza A., Landa-Solis C., Gutiérrez-Ruiz M.C., Del Castillo E.R. Toxicity of cadmium in musculoskeletal diseases. Environ. Toxicol. Pharmacol. 2019;72:103219. doi:10.1016/j.etap.2019.103219. [PubMed] [CrossRef] [Google Scholar]

240. Kumar S., Sharma A. Cadmium toxicity: Effects on human reproduction and fertility. Rev. Environ. Health. 2019;34:327–338. doi:10.1515/reveh-2019-0016. [PubMed] [CrossRef] [Google Scholar]

241. Esteban-Vasallo M.D., Aragonés N., Pollan M., López-Abente G., Perez-Gomez B. Mercury, cadmium, and lead levels in human placenta: A systematic review. Environ. Health Perspect. 2012;120:1369–1377. doi:10.1289/ehp.1204952. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

242. Fatima G., Raza A.M., Hadi N., Nigam N., Mahdi A.A. Cadmium in human diseases: It’s more than just a mere metal. Indian J. Clin. Biochem. 2019;34:371–378. doi:10.1007/s12291-019-00839-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

243. Wani A.L., Ara A., Usmani J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015;8:55–64. doi:10.1515/intox-2015-0009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

244. Gundacker C., Hengstschläger M. The role of the placenta in fetal exposure to heavy metals. Wien. Med. Wochenschr. 2012;162:201–206. doi:10.1007/s10354-012-0074-3. [PubMed] [CrossRef] [Google Scholar]

245. Malik R.N., Zeb N. Assessment of environmental contamination using feathers of Bubulcus ibis L., as a biomonitor of heavy metal pollution, Pakistan. Ecotoxicology. 2009;18:522–536. doi:10.1007/s10646-009-0310-9. [PubMed] [CrossRef] [Google Scholar]

246. Goyer R.A., Clarkson T.W. Toxic effects of metals. In: Klaassen C.D., editor. Casarett and Doull’s Toxicology: The Basic Science of Poisons. McGraw-Hill Medical; New York, NY, USA: 2001. pp. 811–867. [Google Scholar]

247. Ogwuegbu M.O., Ijioma M.A. Effects of certain heavy metals on the population due to mineral exploitation; Proceedings of the International Conference on Scientific and Environmental Issues in the Population, Environment and Sustainable Development in Nigeria; University of Ado Ekiti, Ado Ekiti, Ekiti State, Nigeria. 10 October 2003; pp. 8–10. [Google Scholar]

248. Uriu-Adams J.Y., Keen C.L. Copper, oxidative stress, and human health. Mol. Asp. Med. 2005;26:268–298. doi:10.1016/j.mam.2005.07.015. [PubMed] [CrossRef] [Google Scholar]

249. Gamakaranage C.S.S.K., Rodrigo C., Weerasinghe S., Gnanathasan A., Puvanaraj V., Fernando H. Complications and management of acute copper sulphate poisoning; a case discussion. J. Occup. Med. Toxicol. 2011;6:34. doi:10.1186/1745-6673-6-34. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

250. Hordyjewska A., Popiołek Ł., Kocot J. The many “faces” of copper in medicine and treatment. BioMetals. 2014;27:611–621. doi:10.1007/s10534-014-9736-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

251. Harris E.D. Cellular copper transport and metabolism. Annu. Rev. Nutr. 2000;20:291–310. doi:10.1146/annurev.nutr.20.1.291. [PubMed] [CrossRef] [Google Scholar]

252. Oe S., Miyagawa K., Honma Y., Harada M. Copper induces hepatocyte injury due to the endoplasmic reticulum stress in cultured cells and patients with Wilson disease. Exp. Cell Res. 2016;347:192–200. doi:10.1016/j.yexcr.2016.08.003. [PubMed] [CrossRef] [Google Scholar]

253. Hambidge K.M. Zinc. In: Mertz W., editor. Trace Elements in Human and Animal Nutrition. Academic Press, Elsevier; Orlando, FL, USA: 1986. pp. 13–19. [Google Scholar]

254. Morris D.R., Levenson C.W. Neurotoxicity of Zinc. In: Aschner M.C.L., editor. Neurotoxicity of Metals. Springer; Cham, Switzerland: 2017. pp. 303–312. [Google Scholar]

255. Bush A.I. The metal theory of Alzheimer’s disease. J. Alzheimer’s Dis. 2013;33:S277–S281. doi:10.3233/JAD-2012-129011. [PubMed] [CrossRef] [Google Scholar]

256. Planchart A., Green A., Hoyo C., Mattingly C.J. Heavy metal exposure and metabolic syndrome: Evidence from human and model system studies. Curr. Environ. Health Rep. 2018;5:110–124. doi:10.1007/s40572-018-0182-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

257. Sabarwal A., Kumar K., Singh R.P. Hazardous effects of chemical pesticides on human health–Cancer and other associated disorders. Environ. Toxicol. Pharmacol. 2018;63:103–114. doi:10.1016/j.etap.2018.08.018. [PubMed] [CrossRef] [Google Scholar]

258. Luo D., Zhou T., Tao Y., Feng Y., Shen X., Mei S. Exposure to organochlorine pesticides and non-Hodgkin lymphoma: A meta-analysis of observational studies. Sci. Rep. 2016;6:25768. doi:10.1038/srep25768. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

259. Anderson S.E., Meade B.J. Potential Health Effects Associated with Dermal Exposure to Occupational Chemicals. Environ. Health Insights. 2014;8s1:EHI.S15258. doi:10.4137/EHI.S15258. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

260. Fareed M., Kesavachandran C.N., Pathak M.K., Bihari V., Kuddus M., Srivastava A.K. Visual disturbances with cholinesterase depletion due to exposure of agricultural pesticides among farm workers. Toxicol. Environ. Chem. 2012;94:1601–1609. doi:10.1080/02772248.2012.718780. [CrossRef] [Google Scholar]

261. Amaral A.F.S. Pesticides and Asthma: Challenges for Epidemiology. Front. Public Health. 2014;2:6. doi:10.3389/fpubh.2014.00006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

262. Nie H., Jacobi H.F., Strach K., Xu C., Zhou H., Liebetrau J. Mono-fermentation of chicken manure: Ammonia inhibition and recirculation of the digestate. Bioresour. Technol. 2015;178:238–246. doi:10.1016/j.biortech.2014.09.029. [PubMed] [CrossRef] [Google Scholar]

263. Bonner M.R., Freeman L.E.B., Hoppin J.A., Koutros S., Sandler D.P., Lynch C.F., Hines C.J., Thomas K., Blair A., Alavanja M.C.R. Occupational Exposure to Pesticides and the Incidence of Lung Cancer in the Agricultural Health Study. Environ. Health Perspect. 2017;125:544–551. doi:10.1289/EHP456. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

264. Polanco Rodríguez Á.G., Riba López M.I., DelValls Casillas T.Á., Araujo León J.A., Mahjoub O., Prusty A.K. Monitoring of organochlorine pesticides in blood of women with uterine cervix cancer. Environ. Pollut. 2017;220:853–862. doi:10.1016/j.envpol.2016.10.068. [PubMed] [CrossRef] [Google Scholar]

265. Hernández A.F., Parrón T., Alarcón R. Pesticides and asthma. Curr. Opin. Allergy Clin. Immunol. 2011;11:90–96. doi:10.1097/ACI.0b013e3283445939. [PubMed] [CrossRef] [Google Scholar]

266. Azandjeme C., Bouchard M., Fayomi B., Djrolo F., Houinato D., Delisle H. Growing Burden of Diabetes in Sub- Saharan Africa: Contribution of Pesticides? Curr. Diabetes Rev. 2013;9:437–449. doi:10.2174/15733998113099990078. [PubMed] [CrossRef] [Google Scholar]

267. Freire C., Koifman S. NeuroToxicology Pesticide exposure and Parkinson ’ s disease: Epidemiological evidence of association. Neurotoxicology. 2012;33:947–971. doi:10.1016/j.neuro.2012.05.011. [PubMed] [CrossRef] [Google Scholar]

268. Brouwer M., Huss A., van der Mark M., Nijssen P.C.G., Mulleners W.M., Sas A.M.G., van Laar T., de Snoo G.R., Kromhout H., Vermeulen R.C.H. Environmental exposure to pesticides and the risk of Parkinson’s disease in the Netherlands. Environ. Int. 2017;107:100–110. doi:10.1016/j.envint.2017.07.001. [PubMed] [CrossRef] [Google Scholar]

269. Frazier L.M. Reproductive Disorders Associated with Pesticide Exposure. J. Agromedicine. 2007;12:27–37. doi:10.1300/J096v12n01_04. [PubMed] [CrossRef] [Google Scholar]

270. Mehrpour O., Karrari P., Zamani N., Tsatsakis A.M., Abdollahi M. Occupational exposure to pesticides and consequences on male sem*n and fertility: A review. Toxicol. Lett. 2014;230:146–156. doi:10.1016/j.toxlet.2014.01.029. [PubMed] [CrossRef] [Google Scholar]

271. Kabir E.R., Rahman M.S., Rahman I. A review on endocrine disruptors and their possible impacts on human health. Environ. Toxicol. Pharmacol. 2015;40:241–258. doi:10.1016/j.etap.2015.06.009. [PubMed] [CrossRef] [Google Scholar]

272. Garry V.F. Pesticides and children. Toxicol. Appl. Pharmacol. 2004;198:152–163. doi:10.1016/j.taap.2003.11.027. [PubMed] [CrossRef] [Google Scholar]

273. Grover P., Danadevi K., Mahboob M., Rozati R., Banu B.S., Rahman M.F. Evaluation of genetic damage in workers employed in pesticide production utilizing the Comet assay. Mutagenesis. 2003;18:201–205. doi:10.1093/mutage/18.2.201. [PubMed] [CrossRef] [Google Scholar]

274. Peluso M., Merlo F., Munnia A., Bolognesi C., Puntoni R., Parodi S. 32P-postlabeling detection of DNA adducts in peripheral white blood cells of greenhouse floriculturists from Western Liguria, Italy. Cancer Epidemiol. Biomarkers Prev. 1996;5:361–369. [PubMed] [Google Scholar]

275. Edwards T.M., Myers J.P. Environmental Exposures and Gene Regulation in Disease Etiology. Environ. Health Perspect. 2007;115:1264–1270. doi:10.1289/ehp.9951. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

276. Carbonell E., Xamena N., Creus A., Marcos R. Cytogenetic biomonitoring in a Spanish group of agricultural workers exposed to pesticides. Mutagenesis. 1993;8:511–517. doi:10.1093/mutage/8.6.511. [PubMed] [CrossRef] [Google Scholar]

277. Dong L.M., Potter J.D., White E., Ulrich C.M., Cardon L.R., Peters U. Genetic Susceptibility to Cancer: The role of polymorphisms in candidate genes. JAMA. 2008;299:2423. doi:10.1001/jama.299.20.2423. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

278. Wallace D.R., Buha Djordjevic A. Heavy metal and pesticide exposure: A mixture of potential toxicity and carcinogenicity. Curr. Opin. Toxicol. 2020;19:72–79. doi:10.1016/j.cotox.2020.01.001. [CrossRef] [Google Scholar]

279. Adamkovicova M., Toman R., Cabaj M., Massanyi P., Martiniakova M., Omelka R., Krajcovicova V., Duranova H. Effects of subchronic exposure to cadmium and diazinon on testis and epididymis in rats. Sci. World J. 2014;2014 doi:10.1155/2014/632581. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

280. He W., Guo W., Qian Y., Zhang S., Ren D., Liu S. Synergistic hepatotoxicity by cadmium and chlorpyrifos: Disordered hepatic lipid homeostasis. Mol. Med. Rep. 2015;12:303–308. doi:10.3892/mmr.2015.3381. [PubMed] [CrossRef] [Google Scholar]

281. Seo S., Choi S., Kim K., Kim S.M., Park S.M. Association between urban green space and the risk of cardiovascular disease: A longitudinal study in seven Korean metropolitan areas. Environ. Int. 2019;125:51–57. doi:10.1016/j.envint.2019.01.038. [PubMed] [CrossRef] [Google Scholar]

Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications (2024)

FAQs

How do heavy metals and pesticides affect human health? ›

Mercury toxicity causes Minamata disease, while cadmium poisoning causes itai-itai disease. Heavy metals can also cause toxicity in certain organs of the human body, such as nephrotoxicity, neurotoxicity, hepatotoxicity, skin toxicity, and cardiovascular toxicity, among other things.

How heavy metals contaminate the soil and how its toxicity will affect the all environment and bioaccumulation of metals? ›

These metals present in the soil cause risks to all the biosphere and are taken up through direct ingestion, absorbed by plants which can be hazardous both to the plant and also to the food chain that eats the plant, altering the properties of the soil such as the pH, colour, porosity and natural chemistry thus ...

What are the harmful impacts of heavy metal contamination in the soil and crops grown around dumpsites? ›

This is a biggest threat to the soil, crops, and the communities living around the dumpsites. Soil polluted with heavy metals result in the human health risks, groundwater pollution, plant phytotoxicity and decline in crop and soil production.

How do heavy metals affect soil health? ›

The effects of excessive exposure to soil toxins, such as heavy metals, on plant development and physiological cycles include reducing seed germination [16], limiting plant growth [17], disrupting nutrient uptake [18], stifling photosynthesis [19], and adjusting enzymatic activities [20].

How do heavy metals affect human health? ›

Heavy metal poisoning (toxicity) is the result of exposure to heavy metals like lead, mercury and arsenic. Heavy metals bind to parts of your cells that prevent your organs from doing their job. Symptoms of heavy metal poisoning can be life threatening and they can cause irreversible damage.

What are the harmful effects of pesticides on human health and environment? ›

Environmental pollutants can cause health problems like respiratory diseases, heart disease, and some types of cancer. People with low incomes are more likely to live in polluted areas and have unsafe drinking water.

What are the ecological effects of heavy metal pollution? ›

Effects on wildlife can include reduced fertility, damaged kidneys, slower growth and development, abnormal behavior and even death (http://www.epa.gov/mercury/about.htm). Whales and dolphins may also be at high risk from mercury exposure (UNEP 2002b).

How does heavy metal toxicity affect plants? ›

In plants, metal toxicity reduces the uptake and translocation of nutrients and water, and enhances oxidative damage, thus inhibiting plant growth.

How can toxic chemicals in the soil harm you? ›

Breathing in contaminated dust may cause physical or chemical damage to humans. For example, asbestos fibers can puncture the lungs. Chemicals such as lead can hurt the nervous system, including the brain. Contaminants may also be absorbed through the skin.

What are the major harmful environmental impacts of agriculture? ›

Pollution. Agriculture is the leading source of pollution in many countries. Pesticides, fertilizers and other toxic farm chemicals can poison fresh water, marine ecosystems, air and soil.

What are three major harmful effects of soil erosion due to agriculture? ›

The effects of soil erosion go beyond the loss of fertile land. It has led to increased pollution and sedimentation in streams and rivers, clogging these waterways and causing declines in fish and other species. And degraded lands are also often less able to hold onto water, which can worsen flooding.

What are examples of heavy metals that can pollute the environment and soil? ›

Heavy metals are common pollutants in the soil environment, namely arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), lead (Pb), copper (Cu), zinc (Zn), nickel (Ni). This type of contamination is biologically toxic, widely distributed, and persists long-term in soil environment1.

Why is heavy metal bad for soil? ›

Once heavy metals are introduced into the soil, they cannot be degraded either biological or chemical and can persist in the environment for a long time, therefore, they cause serious environmental pollution and harmful effects to ecosystem including bioaccumulation [12,14].

How do you reduce heavy metal toxicity in soil? ›

Treatment methods for heavy metals in soil
  1. Physical restoration method. Physical remediation method is a method of using liquids to remove pollutants from soil. ...
  2. Chemical remediation. ...
  3. Microbial remediation. ...
  4. Phytoremediation. ...
  5. Plant microbial joint remediation.
Jan 31, 2024

How does metals in the soil affect plants? ›

It has an impact on the physiological and biochemical functions of plants, which in turn affects photosynthesis by lowering the production of chlorophyll, compromising enzymatic activity, and impeding nutrient uptake. This leads to stunted plant growth and development and lower crop yields [99].

What are the effects of pesticides on human health? ›

Health Effects of Certain Classes of Pesticides

Symptoms include headaches, nausea, dizziness, vomiting, chest pain, diarrhea, muscle pain and confusion. In severe poisoning incidents, symptoms can include convulsions, difficulty breathing, involuntary urination, coma and death.

What is the most toxic pesticide to humans? ›

Paraquat is highly toxic to humans; one small accidental sip can be fatal and there is no antidote.

What are the symptoms of pesticide exposure? ›

Headache, dizziness, nausea, vomiting, abdominal cramps, diarrhea. Respiratory depression, tightness in chest, wheezing, productive cough, fluid in lungs. Pin-point pupils, sometimes with blurred or dark vision. Severe cases: seizures, incontinence, respiratory depression, loss of consciousness.

How do pesticides affect the brain? ›

In addition to CNS effects, pesticide exposure can impact a plethora of neurological diseases including, amyotrophic lateral sclerosis (ALS) and Parkinson's disease, along with cognitive function, and dementia-like diseases like Alzheimer's.

Top Articles
Latest Posts
Article information

Author: Ms. Lucile Johns

Last Updated:

Views: 6000

Rating: 4 / 5 (41 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Ms. Lucile Johns

Birthday: 1999-11-16

Address: Suite 237 56046 Walsh Coves, West Enid, VT 46557

Phone: +59115435987187

Job: Education Supervisor

Hobby: Genealogy, Stone skipping, Skydiving, Nordic skating, Couponing, Coloring, Gardening

Introduction: My name is Ms. Lucile Johns, I am a successful, friendly, friendly, homely, adventurous, handsome, delightful person who loves writing and wants to share my knowledge and understanding with you.